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Abstract—Scientific workflows are increasingly gaining mo-

mentum as the new paradigm for modeling and enacting scientific

experiments. The value of a workflow specification does not end

once it is enacted. Indeed, workflow specifications encapsulate

knowledge that documents scientific experiments, and are, there-

fore, worth preserving.

Our experience suggests that workflow preservation is fre-

quently hampered by the volatility of the constituent service

operations when these operations are supplied by third-party

providers. To deal with this issue, we propose a heuristic for

locating substitutes that are able to replace unavailable service

operations within workflows. The proposed method uses the data

links connecting inputs and outputs of service operations in exist-

ing workflow specifications to locate operations with parameters

compatible with those of the missing operations. Furthermore,

it exploits provenance traces collected from past executions of

workflows to ensure that candidate substitutes perform tasks

similar to those of the missing operations. The effectiveness of

the proposed method has been empirically assessed.

Index Terms—scientific workflow, workflow preservation,

workflow provenance, web services

I. INTRODUCTION

The wide adoption of scientific workflows, as a mechanism
for loosely aggregating existing services, has dramatically
revolutionized the way many scientists conduct their daily
experiments as suggested by the increasing number of sci-
entific disciplines that have embraced workflow technology,
e.g., bioinformatics, biomedical informatics, cheminformat-
ics, ecoinformatics and geoinformatics. Using a workflow,
a scientific experiment is defined as a series of analysis
operations connected together using links that specify the flow
of data between them. Enacting the specified workflows allows
scientists to gather evidence for or against a hypothesis or
demonstrate a known fact.

The value of a workflow specification does not end once
it is enacted. Indeed, workflow specifications encapsulate
knowledge that documents scientific experiments, and are,
therefore, worth preserving. Such specifications can be used,
for example, by other scientists as building blocks for de-
signing new experiments, or used by reviewers to assess the
reproducibility of the results claimed by the workflow authors.

A step in this direction, we aim in the context of the
Wf4Ever project 1, to bring new functionality to scientists,

1http://www.wf4ever-project.org

enabling them to take a step forward in the preservation
of scientific knowledge by introducing the novel concept of
workflow-related Research Objects, which acknowledges the
central role of workflows in e-science and their relevance
for scientific preservation. We address the preservation re-
quirements of scientific data by considering workflows as live
entities, which as they evolve need to be kept consistent with
respect to research materials, many of them beyond the control
of the originating scientists.

In a context where the service operations that constitute
the workflow are provided by the institution that wishes to
preserve the worklow, workflow preservation can be (partially)
guaranteed by ensuring that the constituent services are con-
tinuously supplied. The situation is different when the services
are supplied by third party providers. In fact, a problem that
frequently hampers the preservation of such workflows is the
volatility of the services that constitute the workflows. This is
not surprising; there is generally no agreement between service
providers and users that compel the providers to continuously
supply their services.

We have shown in a previous study [3] that semantic
annotations of web services can be used to identify suitable
substitutes for unavailable service operations, thereby enabling
the preservation of scientific workflows. Specifically, we devel-
oped an algorithm that, given as input annotations that seman-
tically describe the missing service operations using concepts
from domain ontologies [22], [13], identifies available service
operations that can play the same role as the unavailable ones.

While, the algorithm we developed is sound, its practical
applicability is hindered by the following facts. First, semantic
annotations of web services are scarce: the number of web
services that are annotated lags well behind the growing
number of available web services. As a result, the likelihood
of locating substitute operations using the algorithm described
in [3], is small. Second, our experience with QuASAR2,
a tool that we developed for testing semantic web service
annotations, suggests that a large proportion of existing se-
mantic annotations suffer from inaccuracies: annotators tend
to use concepts that are subconcepts or superconcepts of
the concepts that should be used for annotating web service

2http://img.cs.man.ac.uk/quasar/verification.php



parameters. As a result, a substitute that is discovered for
replacing an unavailable operation using such annotations may
turn out to be unsuitable, and, inversely, a suitable substitute
may be discarded. Finally, scientific workflows may contain
operations that are implemented using mechanisms other than
web services, e.g., local programs or scripts, the annotations
of which are not available.

To deal with the above issues, we propose in this paper a
heuristic for locating substitutes in the absence of semantic
annotations of web services. The proposed method uses the
data links connecting inputs and outputs of service operations
in existing workflow specifications to locate operations with
parameters compatible to the missing operations. Furthermore,
it exploits provenance data [17] collected from past executions
of workflows to ensure that candidate substitutes perform tasks
similar to those of the missing operations.

The paper is organised as follows. We begin (in Section II)
by formally defining scientific workflows. We then show
how substitutes can be located in the absence of semantic
annotations (in Section III). To assess the value of the proposed
approach in practice, we report on the result of a preliminary
evaluation (in Section IV). We analyse and compare our
work to existing proposals in the literature in Section V,
and conclude the paper in Section VI underlining our main
contributions.

II. DATA-DRIVEN WORKFLOWS

The method we propose for locating substitutes for unavail-
able service operations takes workflow specifications as input.
These can be defined in conventional workflow languages
in which dependencies between the constituent operations
are defined in terms of both dataflow and controlflow, e.g.,
BPEL [19]. However, given that the method we present here
does not exploit controlflow dependencies between operations,
we focus in the rest of the paper on data driven workflows.
We define a data driven workflow wf as a set of operations
connected together using data links. Formally:

wf = �nameWf, OP, DL�,

where nameWf is a unique identifier for the workflow, OP is
the set of operations from which the workflow is composed,
and DL is the set of data links connecting the operations in
OP.

Operation: An operation represents the unit of function-
ality supplied by a service. It is defined as:

op = �nameOp, loc, desc�,

where nameOp is the operation identifier, it must be unique
within the service, loc is the end point of the service to which
the operation belongs (it also serves as the service identifier),
and desc is a textual description of the action performed by
the operation.

Parameter: A service operation is associated with input
and output parameters. A parameter is defined by the pair:

�op, p�,

where op denotes the operation to which the parameter belongs
and p is the parameter’s identifier (unique within the opera-
tion). In the following we will use inputs(op) and outputs(op)
to denote the input parameters and the output parameters of a
service operation op, respectively.

Input parameters can be either mandatory or optional, we
assume the existence of the function mandatory(op) that returns
the set of mandatory input parameters of the operation op.

Data links: A data link describes a data flow between the
output of one operation and the input of another. Let IN be
the set of all input parameters of all operations present in the
workflow wf and OUT the set of all their output parameters,
i.e.:

IN =
�

op ∈ wf.OP

inputs(op)

OUT =
�

op ∈ wf.OP

outputs(op)

The set of data links connecting the operations in wf must then
satisfy:

DL ⊆ OUT × IN

In the rest of the paper, we use the following notations:
• WFS is the domain of workflows.
• OPS is the domain of service operations.
• DLS is the set of all data link connections in WFS, i.e.,

DLS = { dl | dl ∈ DL ∧ � , ,DL� ∈ WFS}.
• INS is the set of all the inputs of the operations in OPS,

i.e.,
INS =

�
op ∈ OPS

inputs(op).

• OUTS is the set of all the outputs of the operations in
OPS, i.e.,
OUTS =

�
op ∈ OPS

outputs(op).

• connectedParams(op,wf) returns the set of parameters that
are connected to the input or output parameters of the
operation op within the workflow wf.

III. DISCOVERING SUBSTITUTES FOR VOLATILE SERVICE
OPERATIONS

As described in the introduction, because of the scarcity of
semantic annotations of web services the likelihood of locating
substitute operations using semantic annotations is small. This
raises the question as to how a substitute can be located when
semantic annotations of web services are not available?

A solution that we explore in the rest of this paper uses as
input existing workflow specifications to locate substitutes. To
illustrate this idea, we will use an example of a real in silico
experiment that we have developed in ISPIDER, an e-Science
project3. The experiment is used for performing value-added
protein identification in which protein identification results
are augmented with additional information about the proteins
that are homologous to the identified protein [1]. Figure 1
illustrates the workflow that implements this experiment.

3http://www.ispider.man.ac.uk/



Fig. 1. Value-added protein identification workflow (identified in the text by proteinIdentificationWf1 )

The workflow consists of three operations. The IdentifyPro-
tein operation takes as input peptide masses obtained from
the digestion of a protein together with an identification error
and outputs the Uniprot accession number of the “best”
match. Given a protein accession, the operation GetHomologous
performs a homology search and returns the list of similar
proteins. The accessions of the homologous proteins are then
used to feed the execution of the GetGOTerm operation to ob-
tain their corresponding gene ontology term4. We constructed
this workflow four years before the time of writing. Later, we
received a request from a bioinformatician from the myGrid
project5 to use the workflow. However, because the operation
GetHomologous that we used for performing the protein homol-
ogy search did no longer exist, the user was unable to execute
the workflow. Therefore, we had to search for an available web
service that performs homology searches and that we can use
instead. This operation turned out to be time consuming. We
found several web services for performing homology searches
and that are provided by the DNA Databank of Japan6, the
European Bioinformatics Institute7 and the National Center
for Biotechnology Information8. Nonetheless, we had to try
several service operations before locating an operation that can
actually replace the GetHomologous operation within the protein
identification workflow. The reason is that even though the
service operations we found fulfill the task that the unavailable
one does (i.e., protein homology search), they require and
deliver parameters different from those that the unavailable
operation has: some of the operations that we tried to use
have input and output parameters that are mismatching with
the output of the IdentifyProtein operation and the input of the
GetGOTerm operation.

The rest of this section presents the elements of the solution
that we propose for locating suitable substitutes for unavailable
service operations.

A. Parameter Compatibility

Consider the existence of the workflow illustrated in Fig-
ure 2. The operation GetSimilarProteins in this workflow is
connected to both IdentifyProtein and GetGOTerm which are also

4http://www.geneontology.org/
5http://www.mygrid.org.uk/
6http://www.ddbj.nig.ac.jp/
7http://www.ebi.ac.uk/
8http://www.ncbi.nlm.nih.gov/

connected to the unavailable operation GetHomologous. If the
data links in this workflow are free from mismatches then
the input and the output of GetSimilarProtein are respectively
compatible with the output of IdentifyProtein and the input of
GetGOTerm in that they can be connected within a workflow.

Formally, let wf1 be a workflow in which the operation op1
is unavailable. The operation op2 can replace the operation
op1 in terms of its inputs and outputs if for every parameter
(op’,p’) that is connected to op1 in the workflow wf1, there
exists a workflow wf2 in WFS in which the parameter (op’,p’)
is connected to op2. That is:

∀ (op�, p�) ∈ connectedParams(op1 ,wf1 ),
∃ wf2 ∈ WFS ,

(op�, p�) ∈ connectedParams(op2 ,wf2 )
For example, the input and output parameters of the op-

erations connected to the GetHomologous operation within the
workflow proteinIdentificationWf1 illustrated in Figure 1 are
connected to the GetSimilarProteins operation within the work-
flow proteinIdentificationWf2 illustrated in Figure 2. There-
fore, the operation GetSimilarProteins can replace the operation
GetHomologous in terms of inputs and outputs within the work-
flow in proteinIdentificationWf1 . In the following, we con-
sider the existence of the function compatibleParams(op),
that, given an operation op, returns the set of operations that
can replace op in terms of input and output parameters.

Notice that in addition to the condition stated above, all
the mandatory input parameters of the substitute must be
connected within the workflow in which it is used. For
example, if the operation GetSimilarProteins had a mandatory
input other than (GetSimilarProteins, i), then it would have not
been possible to use it as a replacement for the GetHomologous
operation.

In the following we assume the existence of the function
map() with the following signature:

map : (INS ∪ OUTS) × OP × WFS → (INS ∪ OUTS)

Given a parameter (op1 , p1 ) and a workflow wf,
map((op1 , p1 ), op2 ,wf ) returns the parameter (op2 , p2 ) that
can play the same role as (op1 , p1 ) within the workflow wf.
For example:

map((GetHomologous,AC ),GetSimilarProteins,
proteinIdentificationWf1 ) = (GetSimilarProteins, i)

map((GetHomologous,ACResult),GetSimilarProteins,



Fig. 2. Value-added protein identification workflow (identified in the text by proteinIdentificationWf2 )

proteinIdentificationWf1 ) = (GetSimilarProteins, o)

map() is a partial function in the sense that an operation may
not have a parameter that can play the same role as the
parameter of a missing operation within a given workflow.

B. Task Compatibility

In addition to the compatibility in terms of inputs and out-
puts, we have to check that the candidate substitute performs
a task compatible with that of the unavailable operation. This
raises the question as to how we can verify that a candidate sub-
stitute performs a task that is compatible with that of the unavailable
operation in the absence of semantic web service annotations.

To perform this test, we exploit the following observation.
If GetSimilarProteins performs a task compatible with that of
GetHomologous, then for the same input, both operations should
in principle deliver the same output. Formally, an operation
op2 is able to replace the operation op1 in terms of task, if for
every possible input instances that op1 is able to consume, op2
delivers the same output as that obtained by invoking op1. To
perform this test, however, we will have to call the missing
operation op1!

A solution that we adopt for overcoming the above problem
makes use of workflow provenance logs. These are traces that
contain information about past executions of workflows. More
importantly, they contain intermediate data that were used as
input and delivered as output by the constituent operations of
a workflow when enacted. Example of workflow provenance
stores are Janus [15] and PASOA [14]. The rest of this section
shows the method we use to verify that a given operation
performs a task compatible with that of the missing operation
using as input collected workflow provenance logs.

Given a candidate operation that was located based on
parameters connections in workflows as illustrated earlier, we
invoke it using the same inputs that were used in the past to
invoke the unavailable operation and which are retrieved from
provenance logs. We then compare the results of unavailable
and candidate substitute. The candidate is judged to be a
suitable substitute if it delivers the same results as those
obtained in the past by invoking the unavailable operation.
To formally express this test we define an operation execution
by the triple:

�op, I , O�

I is a set of pairs ((op, i), insi) where (op, i) is an input
parameter of op and insi is the instance used to feed (op, i).
Similarly, O is a set of pairs �(op, o), inso� where (op, o) is
an output parameter of op and inso is the value of (op, o) that
was obtained from the execution of op with the input values
given in Iinputs .

To retrieve operation executions, we use the function getEx-
ecutions, the signature of which is illustrated below.

getExecutions : OP → E

where E is the domain of operation executions. We also
assume the existence of the function value() to retrieve the
value associated with an input/output within an execution.

value : (INS ∪ OUTS ) × E → V

where V is the domain of values of input and output parame-
ters.

Let op1 be an unavailable operation and op2 be an operation
with inputs and outputs compatible with those of op1. op2 may
be compatible in terms of task with op1 if:

∀ e1 ∈ getExecutions(op1), ∃ e2 ∈ getExecutions(op2),
such that:

∀(op1 , i1 ) ∈ inputs(op1 ),
value((op1 , i1 ), e1 ) = value(map((op1 , i1 ), op2 ,wf1 ), e2 )
and
∀(op1 , o1 ) ∈ outputs(op1 ),
value((op1 , o1 ), e1 ) = value(map((op1 , o1 ), op2 ,wf1 ), e2 )

Notice that we say may be compatible. This is because we
may not be able to compare the outputs obtained for every
possible input value of the operation op1. Provenance logs is
likely to provide only a subset of possible input values that
the unavailable operation was able to consume and, therefore,
may not include values for which the candidate operation
delivers results that are different from those obtained using
the unavailable operation.

C. Relaxing Substitutability Conditions

The above conditions for checking the suitability of an
operation as a substitute for another one may be stronger than
is required in practice. The bioinformatics field in particular,
the input and output parameters of bioinformatics analysis
operations are weakly typed. Most of the time, they are typed
as Strings no matter how complex are their contents. More
importantly, input and output parameters of the same semantic
domain can be formatted using a multitude of representations.
There are various text representations that are adopted in
bioinformatics. For example, a biological sequence can be
formatted according to Fasta, Ensemble, Uniprot, gff formats
to cite a few. Because of representation mismatch, a service
operation that has input (resp. output) parameters that belong
to the same semantic domain as those of the missing operation,
and that performs the same task as the missing operation, may
be found not to be a suitable substitute. To overcome such a
problem, we relax the above condition as illustrated below by



>sp|P17110|CH36_CERCA Chorion protein S36 OS=Ceratitis
MNCFLFTLFFVAAPLATASYGSSSGGGGGGSSYLSSASSNGLDELVQ
AAAGGAQQAGGTITPANAEIPVSPAEVARLNQVQAQLQALNSNPV
YRNLKNSDAIAESLAESSLASKIRQGNINIVAPNVIDQGVYRSLLVPS
GQNNHQVIATQPLPPIIVNQPALPPTQIGGGPAAVVKAAPVIYKIKP
SVIYQQEVINKVPTPLSLNPVYVKVYKPGKKIDAPLVPGVQQNYQA
PSYGGSSYSAPAASYEPAPAPSYSAAPAQSYNAAPAPSYSAAPAASY
GAAPSASYDAAPAASYGAESSYGSPQSSSSYGSAPPASGY

Fig. 3. A protein entry formatted using the Fasta representation

requiring that the output values of unavailable and substitute
to be similar (as opposed to equal).
∀ e1 ∈ getExecutions(op1), ∃ e2 ∈ getExecutions(op2),
such that:
∀(op1 , i1 ) ∈ inputs(op1 ),
value((op1 , i1 ), e1 ) = value(map((op1 , i1 ), op2 ,wf1 ), e2 )
and
∀(op1 , o1 ) ∈ outputs(op1 ),
sim(value((op1 , o1 ), e1 ), value(map((op1 , o1 ), op2 ,wf1 ), e2 ))
≥ w

sim() is a string similarity function [23] that returns a double
ranging from 0 to 1 specifying how similar the values given
as input. It returns 1 when the input values of the function are
equal. w is a value between 0 and 1 that can be specified by the
user; it represents the level of similarity required. Examples
of similarity metrics that can be used for this purpose as the
Euclidian and Cosine metrics [23].

The use of similarity metrics can be helpful in identifying
identical entries when the difference between representations
is minor. When the difference in representation is large, two
entries that are identical may be found to be different even
when similarity metrics are employed to compare parameters
values. To illustrate this, consider the protein sequences that
are formatted according to Fasta and Uniprot formats and
which are illustrated in Figure 3 an Figure 4, respectively.
These protein sequences designate the same protein, yet if we
simply compare their content, they are different. The use of
similarity metrics to compare the two entries does not help.
For example, the similarity score obtained using the Cosine
similarity is 0.07, which is a low similarity score. This is partly
due to the fact that when comparing (complex) parameter
instances, the above solution treats them as textual content; in
other words, it does not distinguish representation from actual
content.

To overcome the above problem, we use a two-step ap-
proach in which given a parameter value, we first try to derive
its representation. This step is performed using a recognizer
that is able to recognize widely popular biological formats.
Some representations contain key attributes that can be used
to uniquely identify a biological entry that is represented by the
parameter instance. This is the case for example for biological
sequence records. If that is the case, the recognizer extracts
the value of such an attribute. For example, the attribute used
to identify entries formatted using the Ensembl format is AC,
where as in Fasta format, the identifier is specified in the first
line using the regular expression sp|identifier|.

ID CH36_CERCA Reviewed; 320 AA.
AC P17110;
DT 01-AUG-1990, integrated into
DT UniProtKB/Swiss-Prot.
DT 01-AUG-1990, sequence version 1.
DT 05-OCT-2010, entry version 44.
DE RecName: Full=Chorion protein S36;
DE Flags: Precursor;
GN Name=Cp36; Synonyms=S36;
OS Ceratitis capitata (Mediterranean fruit fly)
OC Eukaryota; Metazoa; Arthropoda; Hexapoda;
OC Neoptera; Endopterygota; Diptera; Brachycera;
OC Tephritoidea; Tephritidae; Ceratitis; Ceratitis.
OX NCBI_TaxID=7213;
KW Repeat; Secreted; Signal.
SQ SEQUENCE 320 AA; 32319 MW; ECF9B72FFBE54C61
MNCFLFTLFFVAAPLATASYGSSSGGGGGGSSYLSSASSNGLDELVQ
AAAGGAQQAGGTITPANAEIPVSPAEVARLNQVQAQLQALNSNPV
YRNLKNSDAIAESLAESSLASKIRQGNINIVAPNVIDQGVYRSLLVPS
GQNNHQVIATQPLPPIIVNQPALPPTQIGGGPAAVVKAAPVIYKIKP
SVIYQQEVINKVPTPLSLNPVYVKVYKPGKKIDAPLVPGVQQNYQA
PSYGGSSYSAPAASYEPAPAPSYSAAPAQSYNAAPAPSYSAAPAASY
GAAPSASYDAAPAASYGAESSYGSPQSSSSYGSAPPASGY
//

Fig. 4. A protein entry formatted using the Ensembl representation

Now to compare two entries such as those presented earlier,
if such entries are associated with identifiers, then rather than
comparing their content, we compare their identifiers. Using
this approach, the above two entries are found to be identical:
both are identified using the term P17110.

In the following we consider the existence of the boolean
function isTaskCompatible(op, op�), which is true if the
operation op� performs the same task as the operation op, and
is false, otherwise.

Now that we have presented all elements of the solution, we
can proceed to the description of the algorithm used to locate
substitutes.

The algorithm is listed in Figure 5. The algorithm is com-
posed of two main steps. First, given a missing operation opm,
the set of operations Candidate ops that are able to replace
opm in terms of input and output parameters are located (line
2). The operations in Candidate ops that perform the same
task as opm are then added to the set of suitable substitutes
(lines 3-5).

Algorithm LocateSubstitutes
Inputs opm : an unavailable operation
Outputs OPs : A set of substitutes for opm

Begin

1 OPs ← ∅
2 Candidate OPs ⇐ compatibleParams(opm)
3 For each op in Candidate OPs Do

4 If isTaskCompatible(opm, op)
5 Then OPs ← OPs ∪ {op}
6 Return OPs

End

Fig. 5. Algorithm used for locating substitutes.



Fig. 6. Example of a workflow that can be used to replace the service operation GetHomologous in the protein identification workflow

D. Replacing Missing Operation with a Workflow

As mentioned earlier, in certain cases, we may locate
substitutes operations that, although, performs the same task
and take inputs and outputs that are compatible with the
missing operations in that they belong the same semantic
domain, the input and output parameters of the substitute
may be formatted using representations that are different from
those used by the missing operations. To resolve representation
mismatches, we use a method in which the candidate substitute
is combined within a workflow to other service operations
that transform the representation of its inputs and outputs as
required. The obtained workflow is then used to substitute the
unavailable operation. This is perhaps better explained using
a concrete example. In the protein identification workflow, we
found a service operation, SearchSimilarProteins that performs
the same task. As far as the input and output parameters are
concerned, SearchSimilarProteins has an input that is compatible
with the output of the operation IdentifyProtein in terms of data
type and semantic domain, however, because IdentifyProtein
outputs protein accession that is formatted according to the
IPIAccession format and SearchSimilarProteins’s input requires
the protein accession to be formatted using the UniprotAccession
representation, the two parameters cannot be connected. Sim-
ilarly, SearchSimilarProteins outputs protein records formatted
using the Fasta representation whereas GetGOTerm’s input re-
quires protein records formatted according to the UniprotRecord
format and, thus, the two parameters cannot be connected.
To resolve this mismatch in representation, Figure 6 shows
that the operation SearchSimialrProteins is combined with two
operations IPIAC TO UniprotAC and UniprotToFasta. The former
is used to transform the IPI protein accession delivered by
IdentifyProtein into Uniprot accession, whereas the second is
used for transforming Uniprot records into Fasta records. Both
IPIAC TO UniprotAC and UniprotToFasta are mapping opera-
tions that do not alter the semantic domain of the input and
output of the operation SearchSimialrProteins. They are domain
preserving mappings: their inputs and outputs belong to the
same semantic domain, e.g., IPIAC TO UniprotAC consumes a
protein accession and outputs a protein accession. These kind
of service operations are commonly used in scientific work-
flows to deal with representation mismatch [4], [5] and are
known in the literature of scientific workflows as Shims [20],
[10]. The resulting workflow can be used to substitute the
operation GetHomologous in the protein identification workflow.

IV. PRELIMINARY EVALUATION

To assess and gain some insight on how effective is the
method presented in this paper, we conducted an experimental
evaluation using as input real world scientific workflows.

Specifically, we used 10 workflows that were developed in
the context of e-science projects such as myGrid, ISPIDER9

and Embrace10. We chose workflows for which example input
parameters are available to be able to log provenance traces
for their executions. To collect data provenance for these
workflows, we enacted them using sample of inputs and logged
the execution traces using Janus [16], the provenance system
of the Taverna workbench [18].

We then created for each workflow, an identical (clone)
workflow, and change a given service operation in the clone
workflow with a fictive operation that does not exist. For
example, Figure 7 shows a workflow that, given a biological
accession, aligns the corresponding biological sequence and
plots the alignment report in a human readable form. We
created a clone workflow in which the operation searchSimple
was replaced by the operation blastSimple, which does not
exist, as shown in Figure 8.

Given the provenance we collected earlier for workflows,
we made some changes to associate the instances of the
inputs and outputs of the operations replaced with those of the
corresponding fictive operations. For example, we associated
the input and output instances of the searchSimple operation
used in the workflow shown in Figure 7 with the input and
output of the blastSimple operation used in the workflow
shown in Figure 8.

Given the workflows obtained by the above operation, we
then run our algorithm for identifying substitutes for the fictive
operations that do not exist. Ideally, each fictive operation
should be replaced by the corresponding operation in the
initial workflow. For example, the substitute for the operation
blastSimple is the operation searchSimple, or an operation that
has parameters that are compatible with those of searchSimple
and performs the same task as that performed by searchSimple.

GetSequence SearchSimple Plot 

Fig. 7. The above workflow performs a sequence alignment, and plots the
results in a form that is human readable.

GetSequence BlastSimple Plot 

Fig. 8. The above workflow is a clone of the workflow illustrated in
Figure 7, in which the operation searchSimple was replaced with the operation
blastSimple, which does not exist.

Using the algorithm presented in this paper for locating
substitutes, we were able to locate suitable substitutes for 9

9http://www.ispider.manchester.ac.uk/cgi-bin/ispider.pl
10http://www.embracegrid.info



service operations out of 10. For the remaining operation,
the algorithm identified 2 operations, one suitable, which is
getSwissEntry, and one unsuitable, getDDBJEntry. After anal-
ysis, it transpired that the provenance collected for these two
operations were erroneous. Both operations were associated
with the same input and output instance. The input is an empty
string, and the output is an error message stating that the input
is not valid, specifically, the output is the following string
’there is no value in the parameter accession’.

To see whether the method we proposed to deal with hetero-
geneity in representation is effective, we labeled the operation
KeggMapper within one of the workflows as unavailable. This
operation takes as input a gene entry that is formatted accord-
ing to the EMBL representation and retrieves the corresponding
biological pathways. We labeled this operation as missing, and
insert the operation Bconv supplied by the Kegg project11 as
a candidate service operation. The operation Bconv performs
the same task and takes input and output parameters that are
semantically compatible with those of KeggMapper. However,
the Bconv operation requires gene entries that are formatted
using the Genbank format. Using our method, the operation
Bconv was identified as suitable substitute even in the presence
of the representation mismatch. This is thanks to the use of
the recognizer which identified two input instances of the
operations KeggMapper and Bconv as identical, i.e., they repre-
sents the same gene even if they are formatted using different
representations. To resolve this representation mismatch, we
used our tool [2] to locate a mapping operation that transforms
EMBL identifiers into Genbank identifiers, EMBLToGenbank. The
substitute of the operation KeggMapper was then a workflow
obtained by composing in sequence EMBLToGenbank to Bconv
(see Figure 9).

Fig. 9. The workflow constructed for substituting the operation KegMapper

In summary, the results of this small study showed that
locating substitutes in the absence of semantic annotations
is possible if provenance logs of unavailable operations are
available. The experiment also showed that error in provenance
logs due to the fact that operation input and output instances
can be error messages, instead of legal values, may pose
problems and lead to the discovery of unsuitable substitutes.

While the above evaluation results are encouraging, further
larger scale experiments that involve thousands of service
operations are needed. Locating substitutes when the number
of services is large can be expensive as every service may
need to be executed once or more. These are issues that we
are looking at as part of our ongoing research investigations.

V. RELATED WORK

While document preservation is a long standing research
theme [21], computation (and therefore workflow) preservation

11http://www.genome.jp/kegg/

is a relatively new topic, which has been gaining interest in the
last few years. For example, the ACM SIGMOD repeatability
effort which has been organized twice since 2008 set up as
a goal to verify that the experiments published in the paper
accepted at the conference are repeatable [12]. Also, Elsevier,
a publisher of scientific, technical and medical information
products and services, has recently organized the Executable
Paper Grand Challenge12, to address the difficulties associated
with reproducing computer science research results. As a
result, few systems have emerged for capturing computation in
the form of workflows that can be shared and preserved. For
example, Koop et al. [11] have developed an infrastructure
for capturing computations and experiments in the form of
workflows that are managed using the VisTrails workflow
systems. Frew et al. [9] developed a system for collecting
provenance that enable the specification of experiments and
computations in the form of workflows.

Our work is complementary to these outlined efforts: while
the above proposals aim to capture computations and ex-
periments in the form of workflows that can be stored and
shared, our work aims at ensuring the preservation of such
workflows by supporting the task of locating substitutes for
volatile services.

Our work is also related to proposals that aim to support
service matching. The issue addressed by such proposals can
be formulated as the problem of locating web services that
match a user request [7]. For example, Woogle [8] is a search
engine for web services. It is used for finding similar service
operations or operations that compose with one another. The
matching algorithm implemented by woogle utilizes clustering
techniques to group the inputs/outputs of service operations
into groups of parameters. Based on the assumption that
similar parameters belong to the same group of parameters,
two operations are considered to match if their respective
inputs/outputs belong to the same group of parameters.

Cardoso el al [6] proposed a method for constructing work-
flows using which the constituent services of the workflow
are located by matching service templates that specify the
characteristics of the services to be incorporated within the
workflow, against the available services. Like Woogle, they
rely on similarity measures for locating the services that
match the desired service templates. Specifically, they propose
algorithms that measure the similarity of the task, inputs and
outputs of the available services to those specified in the
service templates.

In the same lines, Radetzki et al. [20] developed a method
for discovering shims, which are service operations the are
used for resolving mismatches within scientific workflows. In
doing so, they rely on similarity techniques to infer semantic
information about web services, and use the derived semantic
annotations to match web services.

The method presented in this paper differs from the above
proposals in the sense that it does not rely on semantic
annotations of services, which are scarce, or on similarity

12http://www.executablepapers.com



metrics that match service operations by comparing their
names and the names of their parameters, which can be
misleading, but rather uses examples of data instances that
are consumed and produced by service operations and that
are captured in the form of provenance to compare missing
operation and candidate substitutes.

VI. CONCLUSIONS

The volatility of web services is an issue that frequently
arises in practice when sharing, reusing and preserving scien-
tific workflows that use third-party web services. We proposed
in this paper a solution that can assist designers in curating
their workflows by locating substitute operations able to re-
place unavailable ones.

The solution we propose has been evaluated against a small
number of real world scientific workflows. As mentioned in
the evaluation section, larger scale experiments are needed in
order to assess the performance of our method. As part of our
ongoing work, we are investigating the limitations in terms of
performance that the method presented may suffer from and
design heuristics that can be used to improve the efficiency
of the method, e.g., by avoiding the greedy search we are
adopting at present for locating substitutes and opt for more
sophisticated search strategies. Also, we intend to investigate
the capabilities of existing instance-based matching algorithms
in identifying compatible operation parameters. Notice that
the solution proposed relies on the availability of repositories
that store workflow provenance traces. While currently such
repositories are far from being wide-spread, we anticipate an
increase in their number as a result of the efforts being made
by the scientific workflow community to standardize, publish
and share workflow provenance13.

As part of our future work, we are investigating how
our solution can benefit workflow users in practice, e.g., the
users within the life science and astronomy communities. In
particular, we are examining its use within the context of the
Wf4Ever project, a European project that aims to provides the
means for ensuring the preservation of scientific workflows
and myExperiment14, a project that is developing a publicly
accessible repository and associated tools to allow scientists
to publish, annotate and discover workflows.
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